Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
2.
Complex & intelligent systems ; : 2027/01/01 00:00:00.000, 2023.
Article in English | EuropePMC | ID: covidwho-2227252

ABSTRACT

When COVID-19 spread in China in December 2019, thousands of studies have focused on this pandemic. Each presents a unique perspective that reflects the pandemic's main scientific disciplines. For example, social scientists are concerned with reducing the psychological impact on the human mental state especially during lockdown periods. Computer scientists focus on establishing fast and accurate computerized tools to assist in diagnosing, preventing, and recovering from the disease. Medical scientists and doctors, or the frontliners, are the main heroes who received, treated, and worked with the millions of cases at the expense of their own health. Some of them have continued to work even at the expense of their lives. All these studies enforce the multidisciplinary work where scientists from different academic disciplines (social, environmental, technological, etc.) join forces to produce research for beneficial outcomes during the crisis. One of the many branches is computer science along with its various technologies, including artificial intelligence, Internet of Things, big data, decision support systems (DSS), and many more. Among the most notable DSS utilization is those related to multicriterion decision making (MCDM), which is applied in various applications and across many contexts, including business, social, technological and medical. Owing to its importance in developing proper decision regimens and prevention strategies with precise judgment, it is deemed a noteworthy topic of extensive exploration, especially in the context of COVID-19-related medical applications. The present study is a comprehensive review of COVID-19-related medical case studies with MCDM using a systematic review protocol. PRISMA methodology is utilized to obtain a final set of (n = 35) articles from four major scientific databases (ScienceDirect, IEEE Xplore, Scopus, and Web of Science). The final set of articles is categorized into taxonomy comprising five groups: (1) diagnosis (n = 6), (2) safety (n = 11), (3) hospital (n = 8), (4) treatment (n = 4), and (5) review (n = 3). A bibliographic analysis is also presented on the basis of annual scientific production, country scientific production, co-occurrence, and co-authorship. A comprehensive discussion is also presented to discuss the main challenges, motivations, and recommendations in using MCDM research in COVID‐19-related medial case studies. Lastly, we identify critical research gaps with their corresponding solutions and detailed methodologies to serve as a guide for future directions. In conclusion, MCDM can be utilized in the medical field effectively to optimize the resources and make the best choices particularly during pandemics and natural disasters.

3.
International Journal of Information Technology & Decision Making ; : 1-72, 2022.
Article in English | Web of Science | ID: covidwho-2098018

ABSTRACT

Context: When the epidemic first broke out, no specific treatment was available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The urgent need to end this unusual situation has resulted in many attempts to deal with SARS-CoV-2. In addition to several types of vaccinations that have been created, anti-SARS-CoV-2 monoclonal antibodies (mAbs) have added a new dimension to preventative and treatment efforts. This therapy also helps prevent severe symptoms for those at a high risk. Therefore, this is one of the most promising treatments for mild to moderate SARS-CoV-2 cases. However, the availability of anti-SARS-CoV-2 mAb therapy is limited and leads to two main challenges. The first is the privacy challenge of selecting eligible patients from the distribution hospital networking, which requires data sharing, and the second is the prioritization of all eligible patients amongst the distribution hospitals according to dose availability. To our knowledge, no research combined the federated fundamental approach with multicriteria decision-making methods for the treatment of SARS-COV-2, indicating a research gap. Objective: This paper presents a unique sequence processing methodology that distributes anti-SARS-CoV-2 mAbs to eligible high-risk patients with SARS-CoV-2 based on medical requirements by using a novel federated decision-making distributor. Method: This paper proposes a novel federated decision-making distributor (FDMD) of anti-SARS-CoV-2 mAbs for eligible high-risk patients. FDMD is implemented on augmented data of 49,152 cases of patients with SARS-CoV-2 with mild and moderate symptoms. For proof of concept, three hospitals with 16 patients each are enrolled. The proposed FDMD is constructed from the two sides of claim sequencing: central federated server (CFS) and local machine (LM). The CFS includes five sequential phases synchronised with the LMs, namely, the preliminary criteria setting phase that determines the high-risk criteria, calculates their weights using the newly formulated interval-valued spherical fuzzy and hesitant 2-tuple fuzzy-weighted zero-inconsistency (IVSH2-FWZIC), and allocates their values. The subsequent phases are federation, dose availability confirmation, global prioritization of eligible patients and alerting the hospitals with the patients most eligible for receiving the anti-SARS-CoV-2 mAbs according to dose availability. The LM independently performs all local prioritization processes without sharing patients' data using the provided criteria settings and federated parameters from the CFS via the proposed Federated TOPSIS (F-TOPSIS). The sequential processing steps are coherently performed at both sides. Results and Discussion: (1) The proposed FDMD efficiently and independently identifies the high-risk patients most eligible for receiving anti-SARS-CoV-2 mAbs at each local distribution hospital. The final decision at the CFS relies on the indexed patients' score and dose availability without sharing the patients' data. (2) The IVSH2-FWZIC effectively weighs the high-risk criteria of patients with SARS-CoV-2. (3) The local and global prioritization ranks of the F-TOPSIS for eligible patients are subjected to a systematic ranking validated by high correlation results across nine scenarios by altering the weights of the criteria. (4) A comparative analysis of the experimental results with a prior study confirms the effectiveness of the proposed FDMD. Conclusion: The proposed FDMD has the benefits of centrally distributing anti-SARS-CoV-2 mAbs to high-risk patients prioritized based on their eligibility and dose availability, and simultaneously protecting their privacy and offering an effective cure to prevent progression to severe SARS-CoV-2 hospitalization or death.

4.
International Journal of Information Technology & Decision Making ; : 1-41, 2022.
Article in English | Web of Science | ID: covidwho-2042874

ABSTRACT

Mesenchymal stem cell (MSC) transfusion has shown promising results in treating COVID-19 cases despite the limited availability of these MSCs. The task of prioritizing COVID-19 patients for MSC transfusion based on multiple criteria is considered a multi-attribute decision-analysis (MADA) problem. Although literature reviews have assessed the prioritization of COVID-19 patients for MSCs, issues arising from imprecise, unclear and ambiguous information remain unresolved. Compared with the existing MADA methods, the robustness of the fuzzy decision by opinion score method (FDOSM) and fuzzy-weighted zero inconsistency (FWZIC) is proven. This study adopts and integrates FDOSM and FWZIC in a homogeneous Fermatean fuzzy environment for criterion weighting followed by the prioritization of the most eligible COVID-19 patients for MSC transfusion. The research methodology had two phases. The decision matrices of three COVID-19 emergency levels (moderate, severe, and critical) were adopted based on an augmented dataset of 60 patients and discussed in the first phase. The second phase was divided into two subsections. The first section developed Fermatean FWZIC (F-FWZIC) to weigh criteria across each emergency level of COVID-19 patients. These weights were fed to the second section on adopting Fermatean FDOSM (F-FDOSM) for the purpose of prioritizing COVID-19 patients who are the most eligible to receive MSCs. Three methods were used in evaluating the proposed works, and the results included systematic ranking, sensitivity analysis, and benchmarking checklist.

5.
Ksii Transactions on Internet and Information Systems ; 16(7):2169-2190, 2022.
Article in English | Web of Science | ID: covidwho-1988091

ABSTRACT

The COVID-19 pandemic has affected many aspects of human life. The pandemic not only caused millions of fatalities and problems but also changed public sentiment and behavior. Owing to the magnitude of this pandemic, governments worldwide adopted full lockdown measures that attracted much discussion on social media platforms. To investigate the effects of these lockdown measures, this study performed sentiment analysis and latent Dirichlet allocation topic modeling on textual data from Twitter published during the three lockdown waves in Malaysia between 2020 and 2021. Three lockdown measures were identified, the related data for the first two weeks of each lockdown were collected and analysed to understand the public sentiment. The changes between these lockdowns were identified, and the latent topics were highlighted. Most of the public sentiment focused on the first lockdown as reflected in the large number of latent topics generated during this period. The overall sentiment for each lockdown was mostly positive, followed by neutral and then negative. Topic modelling results identified staying at home, quarantine and lockdown as the main aspects of discussion for the first lockdown, whilst importance of health measures and government efforts were the main aspects for the second and third lockdowns. Governments may utilise these findings to understand public sentiment and to formulate precautionary measures that can assure the safety of their citizens and tend to their most pressing problems. These results also highlight the importance of positive messaging during difficult times, establishing digital interventions and formulating new policies to improve the reaction of the public to emergency situations.

6.
Artif Intell Rev ; 55(6): 4979-5062, 2022.
Article in English | MEDLINE | ID: covidwho-1718775

ABSTRACT

The influence of the ongoing COVID-19 pandemic that is being felt in all spheres of our lives and has a remarkable effect on global health care delivery occurs amongst the ongoing global health crisis of patients and the required services. From the time of the first detection of infection amongst the public, researchers investigated various applications in the fight against the COVID-19 outbreak and outlined the crucial roles of different research areas in this unprecedented battle. In the context of existing studies in the literature surrounding COVID-19, related to medical treatment decisions, the dimensions of context addressed in previous multidisciplinary studies reveal the lack of appropriate decision mechanisms during the COVID-19 outbreak. Multiple criteria decision making (MCDM) has been applied widely in our daily lives in various ways with numerous successful stories to help analyse complex decisions and provide an accurate decision process. The rise of MCDM in combating COVID-19 from a theoretical perspective view needs further investigation to meet the important characteristic points that match integrating MCDM and COVID-19. To this end, a comprehensive review and an analysis of these multidisciplinary fields, carried out by different MCDM theories concerning COVID19 in complex case studies, are provided. Research directions on exploring the potentials of MCDM and enhancing its capabilities and power through two directions (i.e. development and evaluation) in COVID-19 are thoroughly discussed. In addition, Bibliometrics has been analysed, visualization and interpretation based on the evaluation and development category using R-tool involves; annual scientific production, country scientific production, Wordcloud, factor analysis in bibliographic, and country collaboration map. Furthermore, 8 characteristic points that go through the analysis based on new tables of information are highlighted and discussed to cover several important facts and percentages associated with standardising the evaluation criteria, MCDM theory in ranking alternatives and weighting criteria, operators used with the MCDM methods, normalisation types for the data used, MCDM theory contexts, selected experts ways, validation scheme for effective MCDM theory and the challenges of MCDM theory used in COVID-19 studies. Accordingly, a recommended MCDM theory solution is presented through three distinct phases as a future direction in COVID19 studies. Key phases of this methodology include the Fuzzy Delphi method for unifying criteria and establishing importance level, Fuzzy weighted Zero Inconsistency for weighting to mitigate the shortcomings of the previous weighting techniques and the MCDM approach by the name Fuzzy Decision by Opinion Score method for prioritising alternatives and providing a unique ranking solution. This study will provide MCDM researchers and the wider community an overview of the current status of MCDM evaluation and development methods and motivate researchers in harnessing MCDM potentials in tackling an accurate decision for different fields against COVID-19.

7.
Applied Intelligence ; : 1-25, 2022.
Article in English | EuropePMC | ID: covidwho-1615028

ABSTRACT

Mesenchymal stem cells (MSCs) have shown promising ability to treat critical cases of coronavirus disease 2019 (COVID-19) by regenerating lung cells and reducing immune system overreaction. However, two main challenges need to be addressed first before MSCs can be efficiently transfused to the most critical cases of COVID-19. First is the selection of suitable MSC sources that can meet the standards of stem cell criteria. Second is differentiating COVID-19 patients into different emergency levels automatically and prioritising them in each emergency level. This study presents an efficient real-time MSC transfusion framework based on multicriteria decision-making(MCDM) methods. In the methodology, the testing phase represents the ability to adhere to plastic surfaces, the upregulation and downregulation of specific surface protein markers and finally the ability to differentiate into different kinds of cells. In the development phase, firstly, two scenarios of an augmented dataset based on the medical perspective are generated to produce 80 patients with different emergency levels. Secondly, an automated triage algorithm based on a formal medical guideline is proposed for real-time monitoring of COVID-19 patients with different emergency levels (i.e. mild, moderate, severe and critical) considering the improvement and deterioration procedures from one level to another. Thirdly, a unique decision matrix for each triage level (except mild) is constructed on the basis of the intersection between the evaluation criteria of each emergency level and list of COVID-19 patients. Thereafter, MCDM methods (i.e. analytic hierarchy process [AHP] and vlsekriterijumska optimizcija i kaompromisno resenje [VIKOR]) are integrated to assign subjective weights for the evaluation criteria within each triage level and then prioritise the COVID-19 patients on the basis of individual and group decision-making(GDM) contexts. Results show that: (1) in both scenarios, the proposed algorithm effectively classified the patients into four emergency levels, including mild, moderate, severe and critical, taking into consideration the improvement and deterioration cases. (2) On the basis of experts’ perspectives, clear differences in most individual prioritisations for patients with different emergency levels in both scenarios were found. (3) In both scenarios, COVID-19 patients were prioritised identically between the internal and external group VIKOR. During the evaluation, the statistical objective method indicated that the patient prioritisations underwent systematic ranking. Moreover, comparison analysis with previous work proved the efficiency of the proposed framework. Thus, the real-time MSC transfusion for COVID-19 patients can follow the order achieved in the group VIKOR results.

8.
J Infect Public Health ; 14(10): 1513-1559, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1500074

ABSTRACT

The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.


Subject(s)
COVID-19 Vaccines , COVID-19 , Decision Making , Fuzzy Logic , Humans , SARS-CoV-2
9.
Comput Biol Med ; 138: 104878, 2021 11.
Article in English | MEDLINE | ID: covidwho-1415329

ABSTRACT

During the coronavirus disease (COVID-19) pandemic, different technologies, including telehealth, are maximised to mitigate the risks and consequences of the disease. Telehealth has been widely utilised because of its usability and safety in providing healthcare services during the COVID-19 pandemic. However, a systematic literature review which provides extensive evidence on the impact of COVID-19 through telehealth and which covers multiple directions in a large-scale research remains lacking. This study aims to review telehealth literature comprehensively since the pandemic started. It also aims to map the research landscape into a coherent taxonomy and characterise this emerging field in terms of motivations, open challenges and recommendations. Articles related to telehealth during the COVID-19 pandemic were systematically searched in the WOS, IEEE, Science Direct, Springer and Scopus databases. The final set included (n = 86) articles discussing telehealth applications with respect to (i) control (n = 25), (ii) technology (n = 14) and (iii) medical procedure (n = 47). Since the beginning of the pandemic, telehealth has been presented in diverse cases. However, it still warrants further attention. Regardless of category, the articles focused on the challenges which hinder the maximisation of telehealth in such times and how to address them. With the rapid increase in the utilization of telehealth in different specialised hospitals and clinics, a potential framework which reflects the authors' implications of the future application and opportunities of telehealth has been established. This article improves our understanding and reveals the full potential of telehealth during these difficult times and beyond.


Subject(s)
COVID-19 , Telemedicine , Humans , Pandemics/prevention & control , SARS-CoV-2
10.
Comput Stand Interfaces ; 80: 103572, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1370486

ABSTRACT

Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.

11.
J Adv Res ; 37: 147-168, 2022 03.
Article in English | MEDLINE | ID: covidwho-1364192

ABSTRACT

Introduction: The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues. Objectives: This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the PFWZIC and PFDOSM methods. Methods: The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the 'recipients list' and 'COVID-19 distribution criteria'. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM. Results: (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values. Conclusion: The findings of this study are expected to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Decision Making , Fuzzy Logic , Humans
12.
Artif Intell Med ; 111: 101983, 2021 01.
Article in English | MEDLINE | ID: covidwho-1059759

ABSTRACT

CONTEXT AND BACKGROUND: Corona virus (COVID) has rapidly gained a foothold and caused a global pandemic. Particularists try their best to tackle this global crisis. New challenges outlined from various medical perspectives may require a novel design solution. Asymptomatic COVID-19 carriers show different health conditions and no symptoms; hence, a differentiation process is required to avert the risk of chronic virus carriers. OBJECTIVES: Laboratory criteria and patient dataset are compulsory in constructing a new framework. Prioritisation is a popular topic and a complex issue for patients with COVID-19, especially for asymptomatic carriers due to multi-laboratory criteria, criterion importance and trade-off amongst these criteria. This study presents new integrated decision-making framework that handles the prioritisation of patients with COVID-19 and can detect the health conditions of asymptomatic carriers. METHODS: The methodology includes four phases. Firstly, eight important laboratory criteria are chosen using two feature selection approaches. Real and simulation datasets from various medical perspectives are integrated to produce a new dataset involving 56 patients with different health conditions and can be used to check asymptomatic cases that can be detected within the prioritisation configuration. The first phase aims to develop a new decision matrix depending on the intersection between 'multi-laboratory criteria' and 'COVID-19 patient list'. In the second phase, entropy is utilised to set the objective weight, and TOPSIS is adapted to prioritise patients in the third phase. Finally, objective validation is performed. RESULTS: The patients are prioritised based on the selected criteria in descending order of health situation starting from the worst to the best. The proposed framework can discriminate among mild, serious and critical conditions and put patients in a queue while considering asymptomatic carriers. Validation findings revealed that the patients are classified into four equal groups and showed significant differences in their scores, indicating the validity of ranking. CONCLUSIONS: This study implies and discusses the numerous benefits of the suggested framework in detecting/recognising the health condition of patients prior to discharge, supporting the hospitalisation characteristics, managing patient care and optimising clinical prediction rule.


Subject(s)
COVID-19/physiopathology , Carrier State/physiopathology , Decision Support Techniques , Diagnostic Techniques and Procedures/statistics & numerical data , Adult , Aged , Computer Simulation , Female , Humans , Male , Middle Aged , Reproducibility of Results , Risk Factors , SARS-CoV-2 , Time Factors
13.
Multimed Tools Appl ; 80(9): 14137-14161, 2021.
Article in English | MEDLINE | ID: covidwho-1056049

ABSTRACT

Secure updating and sharing for large amounts of healthcare information (such as medical data on coronavirus disease 2019 [COVID-19]) in efficient and secure transmission are important but challenging in communication channels amongst hospitals. In particular, in addressing the above challenges, two issues are faced, namely, those related to confidentiality and integrity of their health data and to network failure that may cause concerns about data availability. To the authors' knowledge, no study provides secure updating and sharing solution for large amounts of healthcare information in communication channels amongst hospitals. Therefore, this study proposes and discusses a novel steganography-based blockchain method in the spatial domain as a solution. The novelty of the proposed method is the removal and addition of new particles in the particle swarm optimisation (PSO) algorithm. In addition, hash function can hide secret medical COVID-19 data in hospital databases whilst providing confidentiality with high embedding capacity and high image quality. Moreover, stego images with hash data and blockchain technology are used in updating and sharing medical COVID-19 data between hospitals in the network to improve the level of confidentiality and protect the integrity of medical COVID-19 data in grey-scale images, achieve data availability if any connection failure occurs in a single point of the network and eliminate the central point (third party) in the network during transmission. The proposed method is discussed in three stages. Firstly, the pre-hiding stage estimates the embedding capacity of each host image. Secondly, the secret COVID-19 data hiding stage uses PSO algorithm and hash function. Thirdly, the transmission stage transfers the stego images based on blockchain technology and updates all nodes (hospitals) in the network. As proof of concept for the case study, the authors adopted the latest COVID-19 research published in the Computer Methods and Programs in Biomedicine journal, which presents a rescue framework within hospitals for the storage and transfusion of the best convalescent plasma to the most critical patients with COVID-19 on the basis of biological requirements. The validation and evaluation of the proposed method are discussed.

14.
Appl Intell (Dordr) ; 51(5): 2956-2987, 2021.
Article in English | MEDLINE | ID: covidwho-1056033

ABSTRACT

As coronavirus disease 2019 (COVID-19) spreads across the world, the transfusion of efficient convalescent plasma (CP) to the most critical patients can be the primary approach to preventing the virus spread and treating the disease, and this strategy is considered as an intelligent computing concern. In providing an automated intelligent computing solution to select the appropriate CP for the most critical patients with COVID-19, two challenges aspects are bound to be faced: (1) distributed hospital management aspects (including scalability and management issues for prioritising COVID-19 patients and donors simultaneously), and (2) technical aspects (including the lack of COVID-19 dataset availability of patients and donors and an accurate matching process amongst them considering all blood types). Based on previous reports, no study has provided a solution for CP-transfusion-rescue intelligent framework during this pandemic that has addressed said challenges and issues. This study aimed to propose a novel CP-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on the matching component process to provide an efficient CP from eligible donors to the most critical patients using multicriteria decision-making (MCDM) methods. A dataset, including COVID-19 patients/donors that have met the important criteria in the virology field, must be augmented to improve the developed framework. Four consecutive phases conclude the methodology. In the first phase, a new COVID-19 dataset is generated on the basis of medical-reference ranges by specialised experts in the virology field. The simulation data are classified into 80 patients and 80 donors on the basis of the five biomarker criteria with four blood types (i.e., A, B, AB, and O) and produced for COVID-19 case study. In the second phase, the identification scenario of patient/donor distributions across four centralised/decentralised telemedicine hospitals is identified 'as a proof of concept'. In the third phase, three stages are conducted to develop a CP-transfusion-rescue framework. In the first stage, two decision matrices are adopted and developed on the basis of the five 'serological/protein biomarker' criteria for the prioritisation of patient/donor lists. In the second stage, MCDM techniques are analysed to adopt individual and group decision making based on integrated AHP-TOPSIS as suitable methods. In the third stage, the intelligent matching components amongst patients/donors are developed on the basis of four distinct rules. In the final phase, the guideline of the objective validation steps is reported. The intelligent framework implies the benefits and strength weights of biomarker criteria to the priority configuration results and can obtain efficient CPs for the most critical patients. The execution of matching components possesses the scalability and balancing presentation within centralised/decentralised hospitals. The objective validation results indicate that the ranking is valid.

15.
Expert Syst Appl ; 167: 114155, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-893767

ABSTRACT

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 occurred unexpectedly in China in December 2019. Tens of millions of confirmed cases and more than hundreds of thousands of confirmed deaths are reported worldwide according to the World Health Organisation. News about the virus is spreading all over social media websites. Consequently, these social media outlets are experiencing and presenting different views, opinions and emotions during various outbreak-related incidents. For computer scientists and researchers, big data are valuable assets for understanding people's sentiments regarding current events, especially those related to the pandemic. Therefore, analysing these sentiments will yield remarkable findings. To the best of our knowledge, previous related studies have focused on one kind of infectious disease. No previous study has examined multiple diseases via sentiment analysis. Accordingly, this research aimed to review and analyse articles about the occurrence of different types of infectious diseases, such as epidemics, pandemics, viruses or outbreaks, during the last 10 years, understand the application of sentiment analysis and obtain the most important literature findings. Articles on related topics were systematically searched in five major databases, namely, ScienceDirect, PubMed, Web of Science, IEEE Xplore and Scopus, from 1 January 2010 to 30 June 2020. These indices were considered sufficiently extensive and reliable to cover our scope of the literature. Articles were selected based on our inclusion and exclusion criteria for the systematic review, with a total of n = 28 articles selected. All these articles were formed into a coherent taxonomy to describe the corresponding current standpoints in the literature in accordance with four main categories: lexicon-based models, machine learning-based models, hybrid-based models and individuals. The obtained articles were categorised into motivations related to disease mitigation, data analysis and challenges faced by researchers with respect to data, social media platforms and community. Other aspects, such as the protocol being followed by the systematic review and demographic statistics of the literature distribution, were included in the review. Interesting patterns were observed in the literature, and the identified articles were grouped accordingly. This study emphasised the current standpoint and opportunities for research in this area and promoted additional efforts towards the understanding of this research field.

16.
J Infect Public Health ; 13(10): 1381-1396, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-888662

ABSTRACT

This study presents a systematic review of artificial intelligence (AI) techniques used in the detection and classification of coronavirus disease 2019 (COVID-19) medical images in terms of evaluation and benchmarking. Five reliable databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus were used to obtain relevant studies of the given topic. Several filtering and scanning stages were performed according to the inclusion/exclusion criteria to screen the 36 studies obtained; however, only 11 studies met the criteria. Taxonomy was performed, and the 11 studies were classified on the basis of two categories, namely, review and research studies. Then, a deep analysis and critical review were performed to highlight the challenges and critical gaps outlined in the academic literature of the given subject. Results showed that no relevant study evaluated and benchmarked AI techniques utilised in classification tasks (i.e. binary, multi-class, multi-labelled and hierarchical classifications) of COVID-19 medical images. In case evaluation and benchmarking will be conducted, three future challenges will be encountered, namely, multiple evaluation criteria within each classification task, trade-off amongst criteria and importance of these criteria. According to the discussed future challenges, the process of evaluation and benchmarking AI techniques used in the classification of COVID-19 medical images considered multi-complex attribute problems. Thus, adopting multi-criteria decision analysis (MCDA) is an essential and effective approach to tackle the problem complexity. Moreover, this study proposes a detailed methodology for the evaluation and benchmarking of AI techniques used in all classification tasks of COVID-19 medical images as future directions; such methodology is presented on the basis of three sequential phases. Firstly, the identification procedure for the construction of four decision matrices, namely, binary, multi-class, multi-labelled and hierarchical, is presented on the basis of the intersection of evaluation criteria of each classification task and AI classification techniques. Secondly, the development of the MCDA approach for benchmarking AI classification techniques is provided on the basis of the integrated analytic hierarchy process and VlseKriterijumska Optimizacija I Kompromisno Resenje methods. Lastly, objective and subjective validation procedures are described to validate the proposed benchmarking solutions.


Subject(s)
Artificial Intelligence/standards , Benchmarking , Coronavirus Infections/diagnostic imaging , Decision Support Techniques , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic/classification , Tomography, X-Ray Computed/classification , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2
17.
International Journal of Information Technology & Decision Making ; 19(5):1247-1269, 2020.
Article in English | Web of Science | ID: covidwho-841137

ABSTRACT

Coronavirus disease (COVID-19) pandemic has a tremendous effect on people's lives worldwide, and the number of infected patients increases daily. The healthcare sector is affected by a large number of patients with COVID-19, and a solution is urgently needed to avert the risk of deteriorating patients in terms of prioritizing patients based on their health conditions. Prioritization of patients with COVID-19 is a complex and multi-criteria decision-analysis (MCDA) problem due to (i) multiple biological laboratory examination criteria, (ii) criteria importance and (iii) trade-off amongst the criteria. This study presents a new multi-biological laboratory examination framework for prioritizing patients with COVID-19 on the basis of integrated MCDA methods. The experiment was conducted on the basis of three phases. In the first phase, patient datasets containing eight biological laboratory examination criteria for six patients with COVID-19 were derived and discussed. The outcome of this phase was used to propose a decision matrix on the basis of the intersection between "biological laboratory examination criteria" and "COVID-19 patients list". In the second phase, the analytic hierarchy process (AHP) method was utilized to set the subjective weights for the biological laboratory examination criteria by respiratory experts. In the last phase, the VIekriterijumsko KOmpromisno Rangiranje (VIKOR) method was adopted to prioritize patients in the context of individual and group decision making (GDM). Results showed that (1) the integration of AHP-VIKOR method based on individual and GDM contexts was effective for solving prioritization problems for patients with COVID-19, and (2) the prioritization results of patients with COVID-19 showed no variation in the internal and external VIKOR GDM contexts. The proposed multi-biological laboratory examination framework can differentiate between the mild and serious or critical condition of patients with COVID-19 by prioritizing them based on integrated AHP-VIKOR methods. In conclusion, medical sectors can use the proposed framework to differentiate the health conditions of infected patients and to assign appropriate care with prompt and effective treatment.

18.
Comput Methods Programs Biomed ; 196: 105617, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-610089

ABSTRACT

CONTEXT: People who have recently recovered from the threat of deteriorating coronavirus disease-2019 (COVID-19) have antibodies to the coronavirus circulating in their blood. Thus, the transfusion of these antibodies to deteriorating patients could theoretically help boost their immune system. Biologically, two challenges need to be surmounted to allow convalescent plasma (CP) transfusion to rescue the most severe COVID-19 patients. First, convalescent subjects must meet donor selection plasma criteria and comply with national health requirements and known standard routine procedures. Second, multi-criteria decision-making (MCDM) problems should be considered in the selection of the most suitable CP and the prioritisation of patients with COVID-19. OBJECTIVE: This paper presents a rescue framework for the transfusion of the best CP to the most critical patients with COVID-19 on the basis of biological requirements by using machine learning and novel MCDM methods. METHOD: The proposed framework is illustrated on the basis of two distinct and consecutive phases (i.e. testing and development). In testing, ABO compatibility is assessed after classifying donors into the four blood types, namely, A, B, AB and O, to indicate the suitability and safety of plasma for administration in order to refine the CP tested list repository. The development phase includes patient and donor sides. In the patient side, prioritisation is performed using a contracted patient decision matrix constructed between 'serological/protein biomarkers and the ratio of the partial pressure of oxygen in arterial blood to fractional inspired oxygen criteria' and 'patient list based on novel MCDM method known as subjective and objective decision by opinion score method'. Then, the patients with the most urgent need are classified into the four blood types and matched with a tested CP list from the test phase in the donor side. Thereafter, the prioritisation of CP tested list is performed using the contracted CP decision matrix. RESULT: An intelligence-integrated concept is proposed to identify the most appropriate CP for corresponding prioritised patients with COVID-19 to help doctors hasten treatments. DISCUSSION: The proposed framework implies the benefits of providing effective care and prevention of the extremely rapidly spreading COVID-19 from affecting patients and the medical sector.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/therapy , Decision Support Systems, Clinical , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , ABO Blood-Group System , Antibodies, Viral/blood , Betacoronavirus , Biomarkers/blood , Blood Proteins/analysis , COVID-19 , Coronavirus Infections/blood , Databases, Factual , Decision Making , Humans , Immunization, Passive , Machine Learning , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , COVID-19 Serotherapy
19.
J Med Syst ; 44(7): 122, 2020 May 25.
Article in English | MEDLINE | ID: covidwho-361521

ABSTRACT

Coronaviruses (CoVs) are a large family of viruses that are common in many animal species, including camels, cattle, cats and bats. Animal CoVs, such as Middle East respiratory syndrome-CoV, severe acute respiratory syndrome (SARS)-CoV, and the new virus named SARS-CoV-2, rarely infect and spread among humans. On January 30, 2020, the International Health Regulations Emergency Committee of the World Health Organisation declared the outbreak of the resulting disease from this new CoV called 'COVID-19', as a 'public health emergency of international concern'. This global pandemic has affected almost the whole planet and caused the death of more than 315,131 patients as of the date of this article. In this context, publishers, journals and researchers are urged to research different domains and stop the spread of this deadly virus. The increasing interest in developing artificial intelligence (AI) applications has addressed several medical problems. However, such applications remain insufficient given the high potential threat posed by this virus to global public health. This systematic review addresses automated AI applications based on data mining and machine learning (ML) algorithms for detecting and diagnosing COVID-19. We aimed to obtain an overview of this critical virus, address the limitations of utilising data mining and ML algorithms, and provide the health sector with the benefits of this technique. We used five databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus and performed three sequences of search queries between 2010 and 2020. Accurate exclusion criteria and selection strategy were applied to screen the obtained 1305 articles. Only eight articles were fully evaluated and included in this review, and this number only emphasised the insufficiency of research in this important area. After analysing all included studies, the results were distributed following the year of publication and the commonly used data mining and ML algorithms. The results found in all papers were discussed to find the gaps in all reviewed papers. Characteristics, such as motivations, challenges, limitations, recommendations, case studies, and features and classes used, were analysed in detail. This study reviewed the state-of-the-art techniques for CoV prediction algorithms based on data mining and ML assessment. The reliability and acceptability of extracted information and datasets from implemented technologies in the literature were considered. Findings showed that researchers must proceed with insights they gain, focus on identifying solutions for CoV problems, and introduce new improvements. The growing emphasis on data mining and ML techniques in medical fields can provide the right environment for change and improvement.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Data Mining/methods , Machine Learning , Pneumonia, Viral/diagnosis , Algorithms , COVID-19 , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL